

### Lecture 3: Covering and fibration



The goal of this lecture is to develop basic techniques to compute examples of fundamental groups through geometric covering. In particular, we will prove

$$\pi_1(S^1) = \mathbb{Z}.$$

Similar method applies to many other examples.

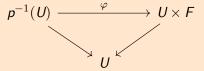


#### Fiber bundle and covering



#### Definition

Let  $p: E \to B$  be in  $\underline{\mathbf{Top}}$ . A trivialization of p over an open set  $U \subset B$  is a homeomorphism  $\varphi: p^{-1}(U) \to U \times F$  over U, i.e. , the following diagram commutes



p is called locally trivial if there exists an open cover  $\mathcal{U}$  of B such that p has a trivialization over each open  $U \in \mathcal{U}$ . Such p is called a fiber bundle, F is called the fiber and B is called the base.



$$\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle p^{-1}(U) \simeq U \times F$$

$$U \subset B$$

We denote it by

$$F \rightarrow E \rightarrow B$$

If we can find a trivialization of p over the whole B, then E is homeomorphic to  $F\times B$ 

$$E \cong F \times B$$

and we say p is a trivial fiber bundle.



The projection map

$$\mathbb{R}^{m+n} \to \mathbb{R}^n$$
,  $(x_1, \dots, x_n, \dots, x_{n+m}) \to (x_1, \dots, x_n)$ 

is a trivial fiber bundle with fiber  $\mathbb{R}^m$ .

#### Example

A real vector bundle of rank n over a manifold is a fiber bundle with fiber  $\mathbb{R}^n$ .



We identity  $S^{2n+1}$  as the unite sphere in  $\mathbb{C}^{n+1}$ 

$$S^{2n+1} = \{(z_0, z_1, \cdots, z_n) \in \mathbb{C}^{n+1} ||z_0|^2 + |z_1|^2 + \cdots + |z_n|^2 = 1\}.$$

There is a natural free  $S^1$ -action on  $S^{2n+1}$  given by

$$e^{i\theta}:(z_0,\cdots,z_n)\to(e^{i\theta}z_0,\cdots,e^{i\theta}z_n),\quad e^{i\theta}\in S^1.$$

The orbit space is the *n*-dim complex projective space  $\mathbb{CP}^n$ 

$$S^{2n+1}/S^1 \cong \mathbb{CP}^n = (\mathbb{C}^{n+1} - \{0\})/\mathbb{C}^*.$$

Then the projection  $S^{2n+1} \to \mathbb{CP}^n$  is a nontrivial fiber bundle with fiber  $S^1$ . The case when n=1 gives the Hopf fibration

$$S^1 \rightarrow S^3 \rightarrow S^2$$
.



A covering (space) (F-covering) is a locally trivial map  $p: E \to B$  with discrete fiber F. A covering map which is a trivial fiber bundle is also called a trivial covering. If the fiber F has n points, we also call it a n-fold covering.

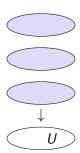
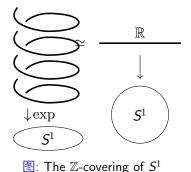


图: Local picture for a 3-fold covering



The map  $\exp: \mathbb{R}^1 \to S^1$ ,  $t \to e^{2\pi \mathbf{i}t}$  is a  $\mathbb{Z}$ -covering.



If 
$$U = S^1 - \{-1\}$$
, then

$$\exp^{-1}(U) = \bigsqcup_{n \in \mathbb{Z}} (n - \frac{1}{2}, n + \frac{1}{2}).$$



Denote by  $\mathbb{RP}^n$  the real projective space of dimension n, i.e.

$$\mathbb{RP}^n = \mathbb{R}^{n+1} - \{0\}/(\underline{x} \sim t\underline{x}), \quad \forall t \in \mathbb{R} - \{0\}, \underline{x} \in \mathbb{R}^{n+1} - \{0\}.$$

Let  $S^n$  be the n-sphere. Then there is a natural double cover

$$S^n \to \mathbb{RP}^n$$
.



The map  $S^1 \to S^1$ ,  $e^{2\pi i\theta} \mapsto e^{2\pi in\theta}$  is |n|-fold covering,  $n \in \mathbb{Z} - \{0\}$ .

#### Example

The map  $\mathbb{C} \to \mathbb{C}$ ,  $z \mapsto z^n$ , is not a covering (why?). But

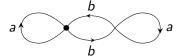
- ▶ the map  $\mathbb{C}^* \to \mathbb{C}^*$ ,  $z \mapsto z^n$ , is a |n|-covering, where  $\mathbb{C}^* = \mathbb{C} \{0\}$  and  $n \in \mathbb{Z} \{0\}$ .
- ▶ the map  $\exp: \mathbb{C} \to \mathbb{C}^*$ ,  $z \to e^{2\pi i z}$  is a  $\mathbb{Z}$ -covering.

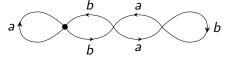


#### The Figure-8



has two coverings as follows (the left is a 2-fold (or double) covering and the right is a 3-fold covering).





#### The 4-regular tree is a covering which is simply connected.



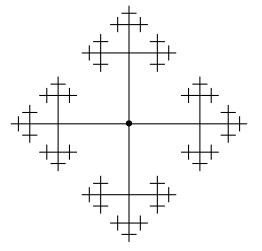


图: 4-regular tree

Denote by  $S_{g,b}$  the genus g surface with b boundary components.

- ► The surface  $S_{4,0}$  admits a 7-fold covering from  $S_{22,0}$ .
- ▶ In general,  $S_{g,b}$  admits a *m*-fold covering from  $S_{mg-m+1,mb}$ .

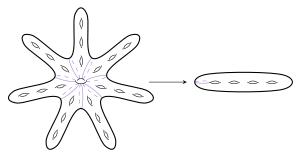


图: A 7-fold covering



#### Definition

Let  $p: E \to B$ ,  $f: X \to B$ . A lifting of f along p is a map  $F: X \to E$  such that  $p \circ F = f$ 

$$X \xrightarrow{f} B$$



### Theorem (Uniqueness of lifting)

Let  $p: E \to B$  be a covering. Let  $F_0, F_1: X \to E$  be two liftings of f. Suppose X is connected and  $F_0, F_1$  agree somewhere. Then

$$F_0 = F_1$$
.



We first state a simple lemma before proving the theorem.

#### Lemma

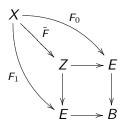
Let  $p: E \rightarrow B$  be a covering. Let

$$D = \{(x, x) \in E \times E | x \in E\}$$

$$Z = \{(x, y) \in E \times E | p(x) = p(y) \}.$$

Then  $D \subset Z$  is both open and closed.

Let D, Z be defined in Lemma. Consider the map  $\tilde{F} = (F_0, F_1): X \to Z \subset E \times E$ . By assumption, we have  $\tilde{F}(X) \cap D \neq \emptyset$ . Moreover, Lemma implies that  $\tilde{F}^{-1}(D)$  is both open and closed. Since X is connected, we find  $\tilde{F}^{-1}(D) = X$  which is equivalent to  $F_0 = F_1$ .



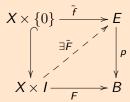


#### **Hurwitz fibration**



#### Definition

A map  $p: E \to B$  is said to have the homotopy lifting property (HLP) with respect to X if for any maps  $\tilde{f}: X \to E$  and  $F: X \times I \to B$  such that  $p \circ \tilde{f} = F|_{X \times 0}$ , there exists a lifting  $\tilde{F}$  of F along p such that  $\tilde{F}|_{X \times 0} = \tilde{f}$ .





#### Definition

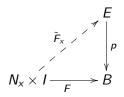
A map  $p: E \to B$  is called a fibration (or Hurwitz fibration) if p has HLP for any space.

#### Theorem

A covering map is a fibration.



Let  $p: E \to B$ ,  $f: X \to B$ ,  $\tilde{f}: X \to E$ ,  $F: X \times I \to B$  be the data as in the definition of HLP. We only need to show the existence of  $\tilde{F}_x$  for some neighbourhood  $N_x$  of any given point  $x \in X$ .



In fact, for any two such neighbourhoods  $N_x$  and  $N_y$  with  $N_x \cap N_y \neq \emptyset$ , we have  $\tilde{F}_x \mid_{N_0}$  and  $\tilde{F}_y \mid_{N_0}$  agree at some point by  $\tilde{f} \mid_{N_0}$  and hence agree everywhere in  $N_x \cap N_y$  by the uniqueness of lifting. Thus  $\{\tilde{F}_x \mid x \in X\}$  glue to give the required lifting  $\tilde{F}$ .



Next, we proceed to prove the existence. Since I is compact, given  $x \in X$  we can find a neighbourhood  $N_x$  and a partition

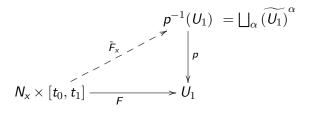
$$0 = t_0 < t_1 < \dots < t_m = 1$$

such that p has a trivialization over open sets

$$U_i \supset F(N_x \times [t_i, t_{i+1}]).$$

Now we construct the lifting  $F_x$  on  $N_x \times [t_0, t_k]$ , for  $1 \le k \le m$ , by induction on k.

For k=1, the lifting  $F_x$  on  $N_x \times [t_0, t_1]$  to one of the sheets of  $p^{-1}(U_1)$  is determined by  $\widetilde{f}|_{N_x \times \{0\}}$ :



Assume that we have constructed  $\tilde{F}_x$  on  $N_x \times [t_0, t_k]$  for some k. Now, the lifting of  $\tilde{F}_x$  on  $N_x \times [t_k, t_{k+1}]$  to one of the sheets of  $p^{-1}(U_k)$  is determined by  $\tilde{f}|_{N_x \times \{t_k\}}$ , which can be glued to the lifting on  $N_x \times [t_0, t_k]$  by the uniqueness of lifting again. This finish the inductive step.

We obtain a lifting  $\tilde{F}_x$  of F on  $N_X \times I$  as required.



#### Corollary

Let  $p: E \to B$  be a covering. Then for any path  $\gamma: I \to B$  and  $e \in E$  such that  $p(e) = \gamma(0)$ , there exists a unique path  $\tilde{\gamma}: I \to E$  which lifts  $\gamma$  and  $\tilde{\gamma}(0) = e$ .

#### Proof.

Apply HLP to X = pt.



#### Corollary

Let  $p: E \to B$  be a covering. Then  $\Pi_1(E) \to \Pi_1(B)$  is a faithful functor. In particular, the map  $\pi_1(E,e) \to \pi_1(B,p(e))$  is injective.

#### Proof.

Let  $\tilde{\gamma}_i\colon I\to E$  be two paths and  $[\tilde{\gamma}_i]\in \mathrm{Hom}_{\Pi_1(E)}(e_1,e_2)$ . Let  $\gamma_i=p\circ \tilde{\gamma}_i$ . Suppose  $[\gamma_1]=[\gamma_2]$  and we need to show that  $[\tilde{\gamma}_1]=[\tilde{\gamma}_2]$ . Let  $F\colon \gamma_1\simeq \gamma_2$  be a homotopy. Consider the following commutative diagram with the lifting  $\tilde{F}$  by HLP

$$I \times \{0\} \xrightarrow{\tilde{\gamma}_1} E$$

$$\downarrow \qquad \qquad \downarrow p$$

$$I \times I \xrightarrow{F} B$$

Then the uniqueness of lifting implies  $\tilde{F}|_{I\times\{1\}}=\tilde{\gamma}_2$ . Thus,  $\tilde{\gamma}_1\overset{\dot{F}}{\simeq}\tilde{\gamma}_2$ .



#### **Transport functor**

Let  $p: E \to B$  be a covering. Let  $\gamma: I \to B$  be a path in B from  $b_1$  to  $b_2$ . It defines a map

$$T_{\gamma}: p^{-1}(b_1) \to p^{-1}(b_2)$$

$$e_1 \to \tilde{\gamma}(1)$$

where  $\tilde{\gamma}$  is a lift of  $\gamma$  with initial condition  $\tilde{\gamma}(0) = e_1$ .

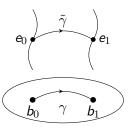


图: The trasportation

Assume  $[\gamma_1] = [\gamma_2]$  in B. HLP implies that  $T_{\gamma_1} = T_{\gamma_2}$ . We find well-defined map:

$$T: \operatorname{Hom}_{\Pi_1(B)}(b_1, b_2) \to \operatorname{Hom}_{\underline{\mathbf{Set}}}(p^{-1}(b_1), p^{-1}(b_2))$$

$$[\gamma] \to \mathcal{T}_{[\gamma]}$$

#### Definition

The following data

$$T: \Pi_1(B) \to \underline{\mathbf{Set}}$$
 $b \to p^{-1}(b)$ 
 $[\gamma] \to T_{[\gamma]}.$ 

defines a functor, called the transport functor. In particular, we have a well-defined map

$$\pi_1(B,b) = \operatorname{Aut}_{\Pi_a(B)}(b) \to \operatorname{Aut}_{\mathbf{Set}}(p^{-1}(b)).$$



# TO THE PARTY OF TH

#### Example

#### Consider the covering map

$$\mathbb{Z} \to \mathbb{R}^1 \stackrel{\exp}{\to} S^1.$$

Consider the following path representing an element of  $\pi_1(S^1)$ 

$$\gamma_n: I \to S^1, \quad t \to \exp(nt) = e^{2\pi i nt}, \quad n \in \mathbb{Z}.$$

Start with any point  $m \in \mathbb{Z}$  in the fiber,  $\gamma_n$  lifts to a map to  $\mathbb{R}^1$ 

$$\tilde{\gamma}_n: I \to R^1, \quad t \to m + nt.$$

We find  $T_{[\gamma_n]}(m) = \tilde{\gamma}(1) = m + n$ . Therefore  $T_{[\gamma_n]} \in \operatorname{Aut}_{\underline{\mathbf{Set}}}(\mathbb{Z})$  is  $T_{[\gamma_n]} : \mathbb{Z} \to \mathbb{Z}, \quad m \to m + n$ .



#### Proposition

Let  $p: E \to B$  be a covering, E be path connected. Let  $e \in E, b = p(e) \in B$ . Then the action of  $\pi_1(B,b)$  on  $p^{-1}(b)$  is transitive, whose stabilizer at e is  $\pi_1(E,e)$ . In other words,

$$p^{-1}(b) \simeq \pi_1(B, b)/\pi_1(E, e)$$

as a coset space, i.e. we have the following short exact sequence

$$1 \to \pi_1(E, e) \to \pi_1(B, b) \xrightarrow{\partial_e} p^{-1}(b) \to 1.$$
$$[\gamma] \mapsto T_{\gamma}(e)$$



For any point  $e' \in p^{-1}(b)$ , let  $\tilde{\gamma} : e \to e'$  be a path in E and  $\gamma = p \circ \tilde{\gamma}$ . Then  $e' = \partial_e(\gamma)$ . This shows the surjectivity of  $\partial_e$ .

HLP implies that  $p_*:\pi_1(E,e)\to\pi_1(B,b)$  is injective and we can view  $\pi_1(E,e)$  as a subgroup of  $\pi_1(B,b)$ . By definition, for  $\tilde{\gamma}\in\pi_1(E,e)$ , we have  $\partial_e([p\circ\tilde{\gamma}])=\tilde{\gamma}(1)=e$ , i.e.  $\pi_1(E,e)\subset\operatorname{stab}_e(\pi_1(B,b))$ . On the other hand, if  $T_{\gamma}(e)=e$ , then the lift  $\tilde{\gamma}$  of  $\gamma$  is a loop, i.e.  $\tilde{\gamma}\in\pi_1(E,e)$ . Therefore,  $\pi_1(E,e)\supset\operatorname{stab}_e(\pi_1(B,b))$ . This implies

$$\pi_1(E,e) = \operatorname{stab}_e(\pi_1(B,b)).$$



Consider the covering map

$$\mathbb{Z} \to \mathbb{R}^1 \stackrel{\exp}{\to} S^1.$$

Apply the previous proposition, we find an identification (as sets)

$$\deg: \pi_1(S^1) \simeq \mathbb{Z}.$$

This is called the degree map. An example of degree n map is

$$S^1 \to S^1$$
,  $e^{i\theta} \to e^{in\theta}$ .



The element  $\gamma_{\it n}\in\pi_1(S^1)$  with  $\deg(\gamma_{\it n})=n$  acts on the fiber  $\mathbb Z$  as

$$T_{\gamma_n}: \mathbb{Z} \to \mathbb{Z}$$
 $a \to a + n.$ 

It is easy to see that

$$T_{\gamma_n} \circ T_{\gamma_m} = T_{\gamma_{n+m}}.$$

This implies that the degree map

$$\deg: \pi_1(S^1) \to \mathbb{Z}$$

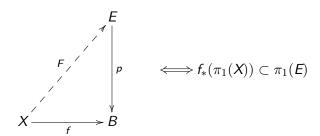
is a group isomorphism. Therefore  $\pi_1(S^1) = \mathbb{Z}$ .



#### Theorem (Lifting Criterion)

Let  $p: E \to B$  be a covering. Let  $f: X \to B$  where X is path connected and locally path connected. Let  $e_0 \in E, x_0 \in X$  such that  $f(x_0) = p(e_0)$ . Then there exists a lift F of f with  $F(x_0) = e_0$  if and only if

$$f_*(\pi_1(X,x_0)) \subset p_*(\pi_1(E,e_0)).$$



If such *F* exists, then

$$f_*(\pi_1(X,x_0)) = \rho_*\Big(F_*(\pi_1(X,x_0))\Big) \subset \rho_*(\pi_1(E,e_0)).$$

Conversely, let

$$\tilde{E} = \{(x, e) \in X \times E | f(x) = p(e)\} \subset X \times E$$

and consider the following commutative diagram

$$\begin{bmatrix}
\tilde{E} & \longrightarrow E \\
\tilde{p} & & \downarrow p \\
X & \longrightarrow B.
\end{bmatrix}$$



## The projection $\tilde{p}$ is also a covering. We have an induced commutative diagram of functors

$$\Pi_1(X) \longrightarrow \Pi_1(B)$$

$$\uparrow \qquad \qquad \downarrow \tau$$

$$\underline{\mathbf{Set}}$$

which induces natural group homomorphisms

$$\pi_1(X,x_0) \stackrel{f_*}{\to} \pi_1(B,b_0) \to \operatorname{Aut}(\tilde{p}^{-1}(x_0)) = \operatorname{Aut}(p^{-1}(b_0)).$$

Here  $b_0=f(x_0)=p(e)$ . Let  $\tilde{e}_0=(x_0,e_0)\in \tilde{E}$ . The condition  $f_*(\pi_1(X,x_0))\subset p_*(\pi_1(E,e_0))$  says that  $\pi_1(X,x_0)$  stabilizes  $\tilde{e}_0$ . By the previous Proposition, this implies an isomorphism

$$\tilde{p}_*: \pi_1(\tilde{E}, \tilde{e}_0) \simeq \pi_1(X, x_0).$$



Since X is locally path connected,  $\tilde{E}$  is also locally path connected. Then path connected components and connected components of  $\tilde{E}$  coincide. Let  $\tilde{X}$  be the (path) connected component of  $\tilde{E}$  containing  $\tilde{e}$ , then  $\pi_1(\tilde{E},\tilde{e}) \simeq \pi_1(X,x_0)$  implies that  $\tilde{p}: \tilde{X} \to X$  is a covering with fiber a single point, hence a homeomorphism. Its inverse defines a continuous map  $X \to \tilde{E}$  whose composition with  $\tilde{E} \to E$  gives F.

